
Multi-Core and GPU
Optimizations for Synergia 2

Qiming Lu & Jim Amundson
Fermilab

SYNERGIA

 Beam dynamics simulation

 Single-particle dynamics

 Multi-particle dynamics where
the particle-particle interactions
are important

 Space charge / beam-beam interaction / electron cloud / wakefields

 Parallel, 3d space charge Particle-in-cell (PIC) code

2

Procedures of Particle-
in-cell Method

3

particles

field mesh

Charge density

Electric field

Interpolation of the
charges to the filed mesh

1. Deposit Charge

Electric field

• Interpolation of the
fields from grid points
to particle positions

• Integration of the
equation of motion • Poisson solver using

spectrum method

• From the scalar field
then solve the
electric field

Parallel PIC 1. charge deposition

Task-1 Task-2 Task-3 Task-4 Task-N

• Randomly distribute particles into MPI tasks
• Each task has the entire spatial domain

4

Task-1 Task-2 Task-3 Task-4 Task-N

• Distributed charge deposition

Parallel PIC 1. charge deposition

5

Task-1 Task-2 Task-3 Task-4 Task-N

• Collecting local charge densities via
MPI_Allreduce()

Global-rho

MPI_Allreduce()

local-rho

Parallel PIC 1. charge deposition

6

MPI
Allgather Phi->Ex,y,z Distributed FFT

• Spatial decomposition in field solver
• Global-rho -> phi -> local-En -> global-En

Global-rho

Task1

Task2

Task3

TaskN

Global-Ex,y,z

Parallel PIC 2. Field Solver (charge density -> fields)

7

Apply Kicks

Task-1 Task-2 Task-3

particles particles particles
E E E

Parallel PIC 3. apply kicks

8

Scalability and Performance
Large problem sizes

Strong scaling Weak scaling

9

Scalability and Performance
Medium problem sizes

Machine
• Fermilab’s Wilson AMD Cluster
• AMD 6128 Opteron 2GHz
• Quad-socket eight-core (32 cores total)
• Infiniband inter-connection

Benchmark Problem

• Four FODO cells
• 8 steps/cell
• 2nd order maps

• Space Charge

• 32 x 32 x 256 grid

• 2,621,440 particles

10

Base strong scaling / performances

• Benchmark
• Four FODO cells

• 8 steps/cell
• 2nd order maps

• Space Charge
• 32 x 32 x 256 grid

• 2,621,440 particles
• Machine

• Fermilab’s Wilson Cluster
• 32-core AMD nodes with

Infiniband interconnection

11

Base strong scaling / performances

Propagate-total

get-phi2 (FFT)

get-global-En (MPI_Allgather)

get-global-rho (MPI_Allreduce)

independent operations

12

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

• Extra FFT computation on each node
• Alternative FFT implementations

13

 Global communication dominates

• Extra FFT computation on each node (comm. avoidance)
• Reduce MPI tasks (simplifies traffic routes)
• Use multi-threading to offload intra-node communications
• Alternative MPI implementations / optimizations options

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

 Extra FFT computation on each node
• Alternative FFT implementations

14

 Global communication dominates

 Extra FFT computation on each node (comm. avoidance)
• Reduce MPI tasks (simplifies traffic routes)
• Use multi-threading to offload intra-node communications
• Alternative MPI implementations / optimizations options

Optimization 1: Communication avoidance

 Perform redundant FFT computation on each node (32 cores)

 Avoid broadcasting fields across nodes

 Avoid poor scaling of multi-node FFT

15

FFT base

avoidance avoidance

base

get-global-En
(MPI_Allgather)

Optimization 1: Communication avoidance

avoidance

Propagate-total

base

Scaling better
• At 256 cores/8 nodes:

90 sec vs. 11 sec

But still terrible
• Best performance at 32

cores/ 1 node

16

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

• Extra FFT computation on each node
• Alternative FFT implementations

17

 Global communication dominates

• Extra FFT computation on each node (comm. avoidance)
 Reduce MPI tasks (simplifies traffic routes)
 Use multi-threading to offload intra-node communications
• Alternative MPI implementations / optimizations options

Optimization 2: MPI + OpenMP Hybrid

 MPI + OpenMP

 OpenMP inside of a node, and MPI between nodes

 Shared memory (multi-threading)
 vs. Distributed memory (multi-tasking)

 Direct access of other threads’ memory without the need of
communication overhead

 Need to deal with race condition to avoid data pollution

 Possible memory contention

 NUMA effects

18

Optimization 2: MPI + OpenMP Hybrid

 Communication improves significantly

19

OpenMP

get-global-rho (MPI_Allreduce)

avoidance

base

OpenMP

get-global-En
(MPI_Allgather)

avoidance

base

Optimization 2: MPI + OpenMP Hybrid

 FFT (FFTW) deteriorated; independent ops affect by NUMA

20

OpenMP

get-phi2 (FFT)

avoidance

base

OpenMP
one copy of shared data

Independent-operations-total

base + avoidance
N copies of distributed
data

1 task x n threads
n/32 task x 32

threads

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

• Extra FFT computation on each node
 Alternative FFT implementations

21

 Global communication dominates

• Extra FFT computation on each node (comm. avoidance)
• Reduce MPI tasks (simplifies traffic routes)
• Use multi-threading to offload intra-node communications
• Alternative MPI implementations / optimizations options

Optimization 3: Customized parallel 3D-FFT

FFTW3 (OMP)

get-phi2 (FFT)

avoidance (MPI)

base (MPI)

OpenMP FFT Best 3D-FFT
performance we

have so far

22

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

• Extra FFT computation on each node
• Alternative FFT implementations

23

 Global communication dominates

• Extra FFT computation on each node (comm. avoidance)
• Reduce MPI tasks (simplifies traffic routes)
• Use multi-threading to offload intra-node communications
 Alternative MPI implementations / optimizations options

Optimization 4: MPI optimizations

get-global-rho
(MPI_Allreduce)

Base + “Loadbalance”

Base

24

Hybrid + “Loadbalance”

$ mpirun --loadbalance -np N application

Optimization Approaches
Medium problem sizes

 Multi-node FFT scales poorly using FFTW

 Extra FFT computation on each node
 Alternative FFT implementations

25

 Global communication dominates

 Extra FFT computation on each node (comm. avoidance)
 Reduce MPI tasks (simplifies traffic routes)
 Use multi-threading to offload intra-node communications
 Alternative MPI implementations / optimizations options

Optimization 1+2+3+4: Final scaling

26

Much improved scaling
• Scales up to 128 cores

Better peak performance
• 2.93 sec vs. 6.22 sec
• A factor of 2 improvement

27

GPU accelerated
Synergia

GPU device

Parallel PIC + CUDA

Task-2 Task-3 Task-N

• Excessive number of threads at finer granularity

28

MPI Task-1

T1,1 T1,2 T1,3

T1,1

T2,1

T3,1

CUDA threads

29

CUDA-fication of the PIC Code

1. Bunch, statistics and diagnostics:

• Calculate the mean and standard deviation of coordinates
and momentums for particles in the bunch

1. Charge deposition:

• One macro particle can contribute up to 8 grid cells

CUDA: Parallel reduction

CUDA: Sort particle to cell and
 use interleaved updates to
 avoid race condition

30

CUDA-fication of the PIC Code

Sort particles to cells
& interleaved deposition

t4

thread block

t1
t2

t3

List of particles
Grid cells

31

CUDA-fication of the PIC Code

3. Green function:

4. Poisson solver:

CUDA: One thread per cell
 easy parallelizable

CUDA: CUFFT library for
 Fourier transforms

32

CUDA-fication of the PIC Code

5. Electric field:

6. Apply kick:

• Advance the position and momentum for each particle in the bunch

CUDA: use shared memory to reduce
 the global memory access

CUDA: One thread per cell. Keep particles sorted for grouped access of En

BlockIdx.
x

B
lo

ck
Id

x
.y

ThreadIdx.x

T
h

re
a

d
Id

x.
y

33

Performance Comparison for Operations

1. Intel Xeon X5550, single process @ 2.67GHz;

2. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU

3. Nvidia Tesla C1060 x 4

34

Overall Performance Comparison

1. Intel Xeon X5550, single process @ 2.67GHz;

2. Fermilab Wilson Xeon Cluster, dual Xeon X5650 2.67GHz nodes. 16 nodes / 128 cores used

3. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU

4. Nvidia Tesla C1060 x 4

